Electronics is the science of how to control the electrical energy, energy in which the electrons have a fundamental role. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive electrical components and interconnection technologies. Commonly, electronic devices contain circuitry consisting primarily or exclusively of active semiconductors supplemented with passive elements; such a circuit is described as an electronic circuits.

The nonlinear behaviour of active components and their ability to control electron flows makes amplification of weak signals possible, and electronics is widely used in information processing, telecommunication, and signal processing. The ability of electronic devices to act as switches makes digital information processing possible. Interconnection technologies such as circuit boards, electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a regular working system.

Electronics is distinct from electrical and electro mechanical science and technology, which deal with the generation, distribution, switching, storage, and conversion of electrical energy to and from other energy forms using wires, motors, generators, batteries, switches, relays, transformers, resistors, and other passive components. This distinction started around 1906 with the invention by Lee De Forest of the triode, which made electrical amplification of weak radio signals and audio signals possible with a non-mechanical device. Until 1950 this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers and vacuum tubes. Today, most electronic devices use semconductor components to perform electron control. The study of semiconductor devices and related technology is considered a branch of solid state physics, whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses of engineering aspects of electronics.

Topics covered in Electronic courses

  • AC circuit theory
  • DC circuit theory
  • Op-amps
  • Resistors
  • Capacitors
  • Diodes
  • Input/output
  • Waveforms
  • Power electronics




An alternating function or AC Waveform on the other hand is defined as one that varies in both magnitude and direction in more or less an even manner with respect to time making it a “Bi-directional” waveform. The term AC or to give it its full description of alternating current, generally refers to a time-varying waveform with the most common of all being called a Sinusoid better known as a Sinusoidal Waveform. Sinusoidal waveforms are more generally called by their short description as Sine Waves


Sine waves are by far one of the most important types of AC waveform used in electrical engineering. The shape obtained by plotting the instantaneous ordinate values of either voltage or current against time is called an AC Waveform. An AC waveform is constantly changing its polarity every half cycle alternating between a positive maximum value and a negative maximum value respectively with regards to time with a common example of this being the domestic mains voltage supply we use in our homes.




Direct Current or D.C. as it is more commonly called, is a form of current or voltage that flows around an electrical circuit in one direction only, making it a “Uni-directional” supply. Generally, both DC currents and voltages are produced by power supplies, batteries, dynamos and solar cells to name a few. A DC voltage or current has a fixed magnitude (amplitude) and a definite direction associated with it. For example, +12V represents 12 volts in the positive direction, or -5V represents 5 volts in the negative direction.


We also know that DC power supplies do not change their value with regards to time, they are a constant value flowing in a continuous steady state direction. In other words, DC maintains the same value for all times and a constant uni-directional DC supply never changes or becomes negative unless its connections are physically reversed.




Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks of Analogue Electronic Circuits. Operational amplifiers are linear devices that have all the properties required for nearly ideal DC amplification and are therefore used extensively in signal conditioning, filtering or to perform mathematical operations such as add, subtract, integration and differentiation.

An Operational Amplifier, or op-amp for short, is fundamentally a voltage amplifying device designed to be used with external feedback components such as resistors and capacitors between its output and input terminals. These feedback components determine the resulting function or “operation” of the amplifier and by virtue of the different feedback configurations whether resistive, capacitive or both, the amplifier can perform a variety of different operations, giving rise to its name of “Operational Amplifier”.


An Operational Amplifier is basically a three-terminal device which consists of two high impedance inputs, one called the Inverting Input, marked with a negative or “minus” sign, ( - ) and the other one called the Non-inverting Input, marked with a positive or “plus” sign ( + ).

The third terminal represents the Op-amps output port which can both sink and source either a voltage or a current. In a linear operational amplifier, the output signal is the amplification factor, known as the amplifiers gain ( A ) multiplied by the value of the input signal and depending on the nature of these input and output signals, there can be four different classifications of operational amplifier gain.

  • Voltage  – Voltage “in” and Voltage “out”
  • Current  – Current “in” and Current “out”
  • Transconductance  – Voltage “in” and Current “out”
  • Transresistance  – Current “in” and Voltage “out”




Resistors, ( R ) are the most fundamental and commonly used of all the electronic components, to the point where they are almost taken for granted. There are many different Types of Resistor available for the electronics constructor to choose from, from very small surface mount chip resistors up to large wirewound power resistors. The principal job of a resistor within an electrical or electronic circuit is to “resist” (hence the name Resistor), regulate or to set the flow of electrons (current) through them by using the type of conductive material from which they are composed. Resistors can also be connected together in various series and parallel combinations to form resistor networks which can act as voltage droppers, voltage dividers or current limiters within a circuit. Resistors are what are called Passive devices, that is they contain no source of power or amplification but only attenuate or reduce the voltage or current signal passing through them.


There are many thousands of different Types of Resistor and are produced in a variety of forms because their particular characteristics and accuracy suit certain areas of application, such as High Stability, High Voltage, High Current etc, or are used as general purpose resistors where their characteristics are less of a problem.

Some of the common characteristics associated with the humble resistor are; Temperature Coefficient, Voltage Coefficient, Noise, Frequency Response, Power as well as a resistors Temperature Rating, Physical Size and Reliability.




Just like the Resistor, the Capacitor, sometimes referred to as a Condenser, is a simple passive device that is used to “store electricity”. The capacitor is a component which has the ability or “capacity” to store energy in the form of an electrical charge producing a potential difference across its plates, much like a small rechargeable battery.There are many different kinds of capacitors available from very small capacitor beads used in resonance circuits to large power factor correction capacitors, but they all do the same thing, they store charge.


When used in a direct current or DC circuit, a capacitor charges up to its supply voltage but blocks the flow of current through it because the dielectric of a capacitor is non-conductive and basically an insulator. However, when a capacitor is connected to an alternating current or AC circuit, the flow of the current appears to pass straight through the capacitor with little or no resistance. There are two types of electrical charge, positive charge in the form of Protons and negative charge in the form of Electrons. When a DC voltage is placed across a capacitor, the positive (+ve) charge quickly accumulates on one plate while a corresponding negative (-ve) charge accumulates on the other plate. For every particle of +ve charge that arrives at one plate a charge of the same sign will depart from the -ve plate. There are a large variety of capacitor styles and types, each one having its own particular advantage, disadvantage and characteristics.




Unlike a resistor, a diode does not behave linearly with respect to the applied voltage as it has an exponential I-V relationship and therefore can not be described simply by using Ohm’s law as we do for resistors.


Diodes are basic unidirectional semiconductor devices that will only allow current to flow through them in one direction only, acting more like a one way electrical valve, (Forward Biased Condition). But, before we have a look at how signal or power diodes work we first need to understand the semiconductors basic construction and concept. Diodes are made from a single piece of Semiconductor material which has a positive “P-region” at one end and a negative “N-region” at the other, and which has a resistivity value somewhere between that of a conductor and an insulator. But what is a “Semiconductor” material?, firstly let’s look at what makes something either a Conductor or an Insulator.




In other words, an Electronic system or circuit must be able to “do” something and Sensors and Transducers are the perfect components for doing this.

The word “Transducer” is the collective term used for both Sensors which can be used to sense a wide range of different energy forms such as movement, electrical signals, radiant energy, thermal or magnetic energy etc, and Actuators which can be used to switch voltages or currents.

There are many different types of sensors and transducers, both analogue and digital and input and output available to choose from. The type of input or output transducer being used, really depends upon the type of signal or process being “Sensed” or “Controlled” but we can define a sensor and transducers as devices that converts one physical quantity into another.

Devices which perform an “Input” function are commonly called Sensors because they “sense” a physical change in some characteristic that changes in response to some excitation, for example heat or force and covert that into an electrical signal. Devices which perform an “Output” function are generally called Actuators and are used to control some external device, for example movement or sound.

Electrical Transducers are used to convert energy of one kind into energy of another kind, so for example, a microphone (input device) converts sound waves into electrical signals for the amplifier to amplify (a process), and a loudspeaker (output device) converts these electrical signals back into sound waves.




In Electronic circuits, we need to produce many different types, frequencies and shapes of Signal Waveforms such as Square Waves, Rectangular Waves, Triangular Waves, Sawtoothed Waveforms and a variety of pulses and spikes. These types of signal waveform can then be used for either timing signals, clock signals or as trigger pulses. However, before we can begin to look at how the different types of waveforms are produced, we firstly need to understand the basic characteristics that make up Electrical Waveforms.

Technically speaking, Electrical Waveforms are basically visual representations of the variation of a voltage or current over time. In plain English this means that if we plotted these voltage or current variations on a piece of graph paper against a base (x-axis) of time, ( t ) the resulting plot or drawing would represent the shape of a Waveform as shown.


There are many different types of electrical waveforms available but generally they can all be broken down into two distinctive groups.

  • Uni-directional Waveforms   –  these electrical waveforms are always positive or negative in nature flowing in one forward direction only as they do not cross the zero axis point. Common uni-directional waveforms include Square-wave timing signals, Clock pulses and Trigger pulses.
  • Bi-directional Waveforms   –  these electrical waveforms are also called alternating waveforms as they alternate from a positive direction to a negative direction constantly crossing the zero axis point. Bi-directional waveforms go through periodic changes in amplitude, with the most common by far being the Sine-wave.

Whether the waveform is uni-directional, bi-directional, periodic, non-periodic, symmetrical, non-symmetrical, simple or complex, all electrical waveforms include the following three common characteristics:

  • Period: – This is the length of time in seconds that the waveform takes to repeat itself from start to finish. This value can also be called the Periodic Time, ( T ) of the waveform for sine waves, or the Pulse Width for square waves.
  • Frequency: – This is the number of times the waveform repeats itself within a one second time period. Frequency is the reciprocal of the time period, ( ƒ = 1/T ) with the standard unit of frequency being the Hertz, (Hz).
  • Amplitude: – This is the magnitude or intensity of the signal waveform measured in volts or amps.




The study of  controlling the flow of electrical energy with the help of electronic circuits is defined as Power Electronics. The subject of Power Electronics is the merger of the field of electrical power system and solid state electronic devices. It is the discipline that involves the study, analysis, and design of circuits that convert electrical energy from one form to another. The specifications in linear Electronics are Gain and Bandwidth. Whereas the specifications in Power Electronics are Efficiency and Distortion.

Study of Power Electronics involves

  • Power Semiconductor Devices – Construction, Characteristics, Operation, protection (Just remember that there is huge difference between signal level semiconductor devices and Power semiconductor devices. Power semiconductor devices have to handle high voltage and current. In order to withstand the high voltage/current ratings, power devices construction is different from the construction of their low power counterparts)
  • Energy storage elements
  • Various Power Converter Topologies
  • Control Strategies, Drive circuits of Topologies
  • EMI, EMC, Heat Dissipation techniques.


Applications of Power Electronics:
            We can realise the applications of Power Electronics everywhere  in our day-to-day life (home, office, factory, car, hospital, theatre etc.)

  • Domestic and theatre lighting
  • Industrial Process in the chemical, paper and steel industries
  • Motor drives from food mixers, washing machines through to lifts and locomotives
  • Power supplies for laboratories and uninterruptible power for vital loads
  • Generation and transmission control.